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Abstract: Gestures have been shown to play a key role in mathematical reasoning and be an 
indicator that mathematical reasoning is embodied – inexorably linked to action, perception, 
and the physical body. Theories of extended cognition accentuate looking beyond the body 
and mind of an individual, thus here we examine how gestural embodied actions become 
distributed over multiple learners confronting mathematical tasks. We identify several ways in 
which gesture can be used collaboratively and explore patterns in how collaborative gestures 
seem to arise in a learning environment involving a motion capture game for geometry. 
Learners use collaborative gestures to extend mathematical ideas over multiple bodies as they 
explore, refine, and extend each other’s reasoning. 

Introduction 
Gestures – movements that accompany speech – have been found to be a powerful component of reasoning in a 
variety of domains (Alibali, Spencer, Knox, & Kita, 2011; Beilock & Goldin-Meadow, 2010; Glenberg, 
Gutierrez, Levin, Japuntich, & Kaschak, 2004), including mathematics. The gestures learners formulate can 
reveal information not expressed in speech (Church & Goldin-Meadow, 1986), can show an association with 
conceptual performance (Goldin-Meadow, 2005; Cook & Goldin-Meadow, 2006), can be manipulated to give 
students new actionable ideas (Goldin-Meadow, Cook, & Mitchell, 2009; Nathan et al., 2014; Novack, 
Congdon, Hemani-Lopez, & Goldin-Meadow, 2014), and, when prevented, can impair reasoning (Hostetter, 
Alibali, & Kita, 2007; Nathan & Martinez, 2015). In addition, teachers use gestures to communicate ideas to 
students in a multimodal manner (Alibali & Nathan, 2012; Valenzeno, Alibali, & Klatzky, 2003), which may be 
particularly important in mathematics classrooms where gestures can make spatial and relational aspects of 
mathematical concepts come alive (Nathan et al., 2011). 
 While considerable research has been conducted on how teachers and learners use gestures during 
mathematical reasoning (see Alibali & Nathan, 2012 for a review), less work has looked at gesturing as a 
collaborative activity that is part of mathematical discussion and argumentation between different learners. Here 
we define collaborative gestures as gestures that physically encompass multiple learners. We propose that 
learners engaging in mathematical reasoning can use their bodies, particularly their hands, in collaborative ways 
to reinforce, extend, and redirect the mathematical ideas of others, which were also expressed through physical 
movement. Theories of embodied cognition (e.g., Wilson, 2002) posit that learners process and understand ideas 
through their bodies and their senses, and that the mind and body, rather than being separate entities, have a bi-
directional relationship. A complementary theory, extended cognition (Clark & Chalmers, 1998), accentuates 
the idea that a student’s cognitive system extends beyond their own minds and bodies, into their environment 
and those around them. Collaborative gestures are a fascinating area of study for the learning sciences, because 
they show how cognitive processes become extended over the embodied experiences of multiple learners. In 
addition, collaborative gestures provide a window into understanding how the body can be leveraged to help 
students understand mathematical ideas as they work jointly on challenging tasks. In the present paper, we 
examine collaborative gestural activity that groups engage in while proving geometry conjectures. 

Theoretical framework 

Gesture as Simulation Action 
The theory of Gesture as Simulated Action (GSA; Hostetter & Alibali, 2008) provides an empirical, embodied 
cognition account of how the multimodal production of gestures comes about. Gestures in the GSA framework 
arise during speaking when pre-motor activation, formed in response to motor or perceptual imagery, is 
activated beyond a speaker’s current gesture threshold. The threshold is the level of motor activation needed for 
a simulation to be expressed in overt gesture; this threshold can vary depending on factors such as the current 
task demands (e.g., strength of motor activation when processing spatial imagery), individual differences (e.g., 
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level of spatial skills), and situational considerations (e.g., social contexts). Nathan (2017) proposed an 
extension of GSA to account for the influences of motor activity the learner is induced to perform (e.g., directed 
actions) on cognition. In this reciprocating model, learners’ actions and movements serve as inputs capable of 
driving the cognition-action system toward associated cognitive states through a bi-directional process. In other 
words, in addition to cognitive states giving rise to actions, directing learners to engage in physical motions may 
give them new ideas and insights relevant to understanding and solving tasks. While Nathan’s (2017) extension 
to GSA accentuates how directing the learner to motion in particular ways can trigger new cognitive and 
embodied states, here we emphasize how observing and embodying the actions and gestures of others, through 
collaborative activity and joint sense-making, can trigger new cognitive and gestural states in learners. We take 
this to be an important case of distributed cognition, which we discuss next. 

Distributed cognition and collaborative gesture 
Professional practice involves the coordination of many different inscriptions and representational technologies 
by differently-positioned actors whose actions occur across a range of social and physical spaces (Goodwin, 
1995; Hutchins, 1995). Through joint, coordinated activity, cognition becomes distributed over a patchwork of 
discontinuous spaces and representational media. Lave (1988) describes how “‘Cognition’ observed in everyday 
practice is distributed—stretched over, not divided among—mind, body, activity and culturally organized 
settings (which include other actors)” (p. 1).  Theories of extended cognition further argue that the social and 
physical environment of learners is actually constituent of their cognitive system (Clark & Chalmers, 1998). The 
implication is that cognition, rather than existing in the head of an individual, is distributed over the bodies of 
multiple learners and the environment around them as they interact. One way cognition can be extended across 
learners is through the use of gestures that extend over multiple persons. 

Prior research on learning origami has identified collaborative gestures as gestures through which a 
learner interacts with the gestures of a communicative partner (Funiyama, 2000). In the context of this past 
research, these gestures often involved a student pointing to or manipulating a teacher’s gestures about origami 
folds. Here we reimagine the idea of collaborative gestures to be relevant to learner-learner interactions around 
mathematical sense-making and take such gestures to be a case of extended cognition. We next turn to a 
discussion of how gestures and actions have been studied in the context of mathematical reasoning. 

Gesture, embodiment, and mathematical proof 
One type of gesture that has been identified as important to mathematical reasoning is dynamic gestures 
(Göksun et al., 2013; Uttal et al., 2012). These are gestures where learners use their bodies to physically 
formulate and then transform or manipulate mathematical objects. For example, a learner might make a triangle 
with their thumbs and forefingers, and then make that triangle grow, shrink, rotate, flip, etc. These kinds of 
gestures might be particularly important and revealing when learners are engaging in mathematical proving or 
“the process employed by an individual to remove or create doubts about the truth of an observation” (Harel & 
Sowder, 1998, p. 241). When learners successfully justify mathematical arguments, their reasoning can be 
transformational in nature, where they perform valid mathematical operations on objects in order to build a 
logical deductive chain of reasoning that transcends particular cases and applies to all mathematical objects 
under consideration. This kind of transformational proof scheme (Harel & Sowder, 1998) may be closely 
coupled with both mentally simulated and physically enacted gesture and action (Nathan et al., 2014). 

Research has shown that dynamic gestures arise during the mathematical reasoning of experts 
(Marghetis, Edwards, & Núñez, 2014) and that dynamic gestures have a strong association with students 
formulating valid proofs to geometrical conjectures (Nathan et al., 2014; Nathan & Walkington, 2017). The 
professional practice of proof itself has been described as “a richly embodied practice that involves inscribing 
and manipulating notations, interacting with those notations through speech and gesture, and using the body to 
enact the meanings of mathematical ideas” (Marghetis, Edwards, & Núñez, 2014, p. 243). The multimodal 
nature of proof is also evident for novice students in classrooms, as proofs often take on verbal and gestural 
forms, as opposed to formal, written ones (Healy & Hoyles, 2000), and teachers and students use gestures to 
track the development of ideas when exploring conjectures (Nathan et al., 2011; Nathan & Walkington, 2017).  

Research questions 
Prior work has identified how gestures arise, why gestures are important, the close connection between 
embodied action and mathematical proof, and the centrality of gestures that show dynamic transformations. 
Here we extend this work by looking at how these embodied actions are used as part of a distributed cognitive 
system through collaborative activity across multiple learners. We address the following research questions: 

1) How are gestures used collaboratively during geometric proof activities? 
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2) How often were collaborative gestures used, and how did this vary by expertise and type of gesture? 
3) How were learners engaging differently with collaborative gestures across individuals and groups? 

Methods 

Participants 
Participants included 20 pre-service and 34 in-service teachers, enrolled in one of five different courses at a 
private university. They were either enrolled in an undergraduate elementary math methods course for pre-
service teachers, a graduate elementary math methods course for pre-service teachers, a graduate course for in-
service middle school math teachers in their first year, a graduate class for high school math teachers in their 
first year, or a graduate master math teacher course for in-service teachers who are generalists interested in 
mathematics or who are secondary mathematics teachers. A total of 64 students across the five classes were 
recruited to participate, however 3 were absent on the day of the study and 7 did not consent to participate, for 
the final sample of 54. Forty-six participants were female, while 8 were male; 38 identified as Caucasian, 6 as 
African-American, 5 as Asian, 3 as Hispanic/Latin@, and 2 as Other race/ethnicity.  

Procedure 
Participants were placed in groups of 3 to 6 to play a Kinect-based video game for learning geometry, called 
The Hidden Village (Nathan & Walkington, 2017). The game included 8 tasks where players perform directed 
motions with their arms and then prove or disprove related geometric conjectures (Table 1). Participants were 
directed to take turns of the person controlling the game for each task such that everyone in the group controlled 
the game at least once. Due to technical issues, some groups only experienced six of the eight game conjectures. 
Participants were instructed to not use pencil or paper to assist them in proving the conjectures, and were told to 
work together. Although the body movements they had been directed to perform in the game were intended to 
give them insights about the proofs (e.g., for a conjecture about similar triangles they were directed to make 
growing triangles with their arms), the directed movements were somewhat rarely explicitly re-enacted in 
participants’ discussions. Here our focus is on the gestures that these learners formulated themselves to help 
them understand, reason through, and collaborate around the proof to each conjecture.  
 
Table 1: Conjectures participant groups proved 
  

1. The sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. 
2. Given that you know the measure of all 3 angles of a triangle, there is only one unique triangle that can be formed with 
these 3 angle measurements. (False) 
3. The area of a parallelogram is the same as the area of a rectangle with the same base and height. 
4. Diagonals of a rectangle are always congruent. 
5. If one angle of a triangle is larger than a second angle, than the side opposite the first angle is longer than the side 
opposite the second angle. 
6. The measure of the central angle of a circle is twice the measure of any inscribed angle intersecting the same two 
endpoints on the circumference of the circle. 
7. Reflecting a point over the x-axis is the same as rotating the point 90 degrees about the origin. (False) 
8. If you double the length and width of a rectangle, the area is exactly doubled. (False) 

Analysis 
Video was captured of groups playing the game, and was transcribed in the Transana software (Woods & 
Fassnacht, 2012). Videos were clipped such that one clip was one group proving one conjecture. Each clip was 
coded for each gesture sequence that arose – a gesture sequence was defined as all of the hand gestures made by 
a single person from the time their hands rose until the time their hands returned to rest. Gesture sequences were 
coded as being individual if the gesturer was making a gesture that was not triggered by or related to the 
gestures of others, and collaborative if they were. For individual gestures, gesturers could still be building off of 
the speech of other learners – gesture were only coded as collaborative if learners were gesturing in response to 
the gestures of other learners. Collaborative gesture sequences were coded for both the learner that was 
performing them and the learner the performer was responding to or collaborating with. Collaborative gestures 
were then separated into different categories using a grounded, bottom-up approach of constant comparisons 
(Glaser & Strauss, 1976). As new collaborative gesture categories emerged, prior clips were revisited and 
recoded. Two coders completed all gesture sequence coding. Fort-four percent of the corpus was double-coded 
by both coders, with discrepancies, issues, and ideas discussed as coding was compared and new categories 
were formulated. A total of 87 clips of 12 groups across the five classes were coded for gesture sequences. 
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Results and discussion 

RQ1: In what ways were gestures used collaboratively? 
Results revealed five categories of collaborative gestures (Table 2). In the example of mirroring gestures in 
Figure 1, two learners are making the same triangle gesture at the same time when proving Conjecture 5 in 
Table 1. In the example of echoing gestures in Figure 1, one learner scales her hands in and out to make similar 
triangles for Conjecture 2 in Table 1, and then another learner takes up her explanation while repeating her 
gesture. These gestures reveal how learners can reflect on and adopt each other’s mathematical reasoning. 
 
Table 2: Categories of collaborative gestures 
 

Gesture Type Description 
Mirror Learners make same gesture at same time, while purposefully following each other’s movement. 
Echo One learner purposefully repeats the gesture made by another learner. 
Echo & Build One learner repeats all or part of another learners’ gesture, but then modifies it or builds on it in some 

way to show a progression of reasoning. 
Alternate One learner gestures their understanding, another learner responds with a different gesture showing 

their understanding, either building or redirecting from the original gesture. 
Joint Two or more learners make a single gestural representation together. 

 

                       
 

Figure 1. Mirroring (left) and echoing (right) gestures. 
 

In the extended example in Figure 2, participants are discussing their reasoning for Conjecture 4 in 
Table 1. Tanya and Karen initially represent their understanding, with Tanya gesturing horizontal sides with her 
hands and Karen gesturing crossed diagonals. In their speech, Tanya focuses on the two sides being equal (Line 
1), while Karen focuses on the diagonal’s opposing relationship to each other (Line 2). Lisa performs an 
alternating gesture to redirect the conversation to another idea – that the sides are parallel (Line 3). She then 
integrates Tanya’s equality gesture into her explanation by echoing it and saying “So they’re the same” (Line 5). 
Karen then echoes both Tanya’s equality gesture and Lisa’s parallel gesture, and builds by adding on her 
crossed arms gesture at the end of the sequence (Lines 6 and 8). Lisa assists her in formulating this explanation 
by repeating her own parallel line gesture, then echoing Karen’s crossed arm gesture (Line 7). Lisa then sweeps 
her diagonal hands in and out to accentuate the idea of congruency, building upon Karen’s gesture (Line 7). 
This transcript demonstrates how different aspects of understanding the same problem become embodied 
through different gestures, and how learners take up and build upon each other’s’ gestures to extend their 
understanding. Karen is able to adopt the gestures of Lisa and Tanya in order to create a mathematical argument 
that brings in all three of their ideas – parallel sides, congruent sides, and diagonals. 

The second extended example in Figure 4 shows an example of joint gestures. Participants are 
discussing Conjecture 6 in Table 2, “The measure of the central angle of a circle is twice the measure of any 
inscribed angle intersecting the same two endpoints on the circumference of the circle.” Diana has been 
explaining her understanding using a gesture of two angles, one formed with her two index fingers (the 
inscribed angle) and one formed with her thumbs (the central angle – see Figure 3). Kyla has been somewhat 
removed from the conversation, and brings herself in by posing the question to Diana “Where is the circle?” 
(Line 1). Since it would be physically impossible for Diana to represent both angles and a circle with her hands 
alone, Diana responds “You have to visualize it” (Line 2).  In the meantime, Kyla walks over to Diana and 
traces a circle around the outside of her angles, and then points to the vertex of the inscribed angle, which she 
believes is the outside of the circle. A third group member, Sophie, responds to the need to represent the circle 
in a more permanent manner by offering her hands to represent the circle, placing them under Diana’s hands 
(Line 3). Kyla and the fourth group member, Carl, then proceed to discuss and point to various parts of the 
embodied diagram that Sophie and Diana have formed (Lines 5-10). This transcript demonstrates how gestural 
activity can become distributed over multiple learners as they represent a single, shared mathematical system 
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that is jointly embodied and that they can collaboratively refer to and discuss. The cognitive work of the 
mathematical system is distributed over all four of their bodies, and the gestures and speech they engage in. 
 

 
Figure 2. Alternating and Echo & Build Gestures. 

 
Overall, we found a variety of ways in which gestures could be used collaboratively in the sense that 

gestures became distributed over multiple learners. This was an initially surprising and unexpected phenomenon 
to arise as these students engaged in mathematical reasoning. Mirroring and echoing gestures showed one 
learner taking up the mathematical reasoning of another, while echo & build gestures and alternate gestures 
showed learners extending and refuting each other’s reasoning using embodied action. Joint gestures allowed 
multiple learners to use their bodies in concert to build and transform an embodied mathematical system 
together. These gestures did not simply accompany their mathematical arguments or their collaborative 
activities – they were an inexorable part of their reasoning processes. 
 

 
Figure 3. (Left) Inscribed and central angles of a circle (Right) Diana’s initial gesture showing these angles. 

 

RQ2: How often were collaborative gestures used? 
A total of 443 gesture sequences were coded across the corpus, of which 218 (49.2%) were collaborative. This 
came to approximately 2.6 collaborative gestures per student group proof attempt. However, the number of 
collaborative gestures used by different groups varied widely – from 0.67 collaborative gestures per proof for 
one group, to 5.9 collaborative gestures per proof for another group. The use of collaborative gestures seemed to 
vary by teacher expertise level – teachers from the two pre-service classes used an average of 1.5 collaborative 
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gestures per conjecture, while teachers from the two first-year in-service classes used an average of 3.5, and 
teachers from the master teacher class used an average of 2.8. 

 
Figure 4. Joint Gestures. 

 
Of the 218 collaborative gestures, 110 (50.5%) were echoing gestures, 56 (25.7%) were alternating 

gestures, 28 (12.8%) were mirroring gestures, and 27 (12.4%) were joint gestures. Of the 110 echoing gestures, 
81 (73.6%) were simple echoes while 29 (26.4%) were echo and build gestures. In terms of the types of 
collaborative gestures the three categories of teachers tended to make, for all three teacher groups, echoing 
gestures made up approximately 50% of the group’s collaborative gestures (pre-service: 54.7%; novice in-
service: 47.3%; master: 50.7%). Master teachers were most likely to use mirroring gestures (pre-service: 11.9%; 
novice in-service: 9.8%; master: 17.9%), while novice first year teachers were most likely to use alternating and 
joint gestures (alternating: pre-service: 23.8%; novice in-service: 28.6%; master: 20.9%; joint: pre-service: 
9.5%; novice in-service: 14.3%; master: 10.4%). Overall there did not seem to be compelling differences 
between categories in the types of collaborative gestures made – although the sample size is small. 

RQ3: How were learners engaging differently with collaborative gestures? 
Figure 5 shows how often students initiated versus received collaborative gestures. Each gray box represents 
one group, and each pill-shape inside of a gray box represents one student. The left side of the pill shows how 
many collaborative gestures per conjecture the student performed (e.g., when they echoed or mirrored another 
learner). The right side of the pill shows how many collaborative gestures per conjecture were directed at the 
student (e.g., someone echoing or mirroring them). Red indicates 0 collaborative gestures by the learner, yellow 
indicates less than 1 but more than 0 collaborative gestures given/received per conjecture by the learner, green 
indicates greater than one but less than two collaborative gestures given/received per conjecture. The top row of 
the figure is the pre-service classes, the middle row is the in-service first year classes, and the bottom row is the 
master teacher class. 
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Figure 5. Distribution of collaborative gesture giving/receiving across 11 student groups. One group is omitted 
because technical problems caused them to join another student group part way through the study. 

 
 As can be seen from Figure 5, across levels of expertise, there were yellow and red students who stayed 
on the fringes of collaborative gesture activity. There were groups of highly collaborative green students as 
well. Some students tended to do a lot of individual gestures, but had group members who would echo or mirror 
or alternate with them regularly. This, however, was somewhat rare – most students tended to give and receive a 
similar number of collaborative gestures. In other cases, group members would give quite a few collaborative 
gestures that would get little attention from their group in terms of being considered or built upon. This figure 
demonstrates how cognition was embodied and distributed across student groups, and how certain learners 
seemed to be more central to these processes than others. 

Significance 
While the importance of gestures to student learning has been established in a variety of studies, less work has 
been done detailing how gestures allow for cognition to be physically distributed over multiple learners. 
Documenting this process and how it comes about with different groups of learners in different learning 
environments is a first step in understanding how learners can engage in joint, embodied reasoning to solve and 
learn from complex tasks. A variety of questions were raised by this study, some of which we’ve addressed but 
were beyond the scope of this paper, while others are ripe for further investigation. These include: (1) How are 
collaborative gestures paired with speech processes implicating different argumentation moves? (2) How are 
collaborative gestures associated with learners successfully overcoming trouble spots and formulating valid 
mathematical arguments? Are certain types or sequences of collaborative gesture more effective than others? (3) 
What are the tradeoffs of using gestures as a collaboration tool rather than, for instance, a shared written or 
digital workspace? and, (4) Can collaborative gestures be directed or taught, particularly using motion capture 
technologies that can detect multiple bodies in motion? This study was exploratory and thus raises more 
questions than it answers, but here we identify a phenomenon that seems both powerful and important to 
understanding and intervening upon students’ mathematical learning. This phenomenon has the potential to be 
leveraged in digital learning environments as motion-based technologies become more feasible in classrooms. 
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